Leading engineering excellence

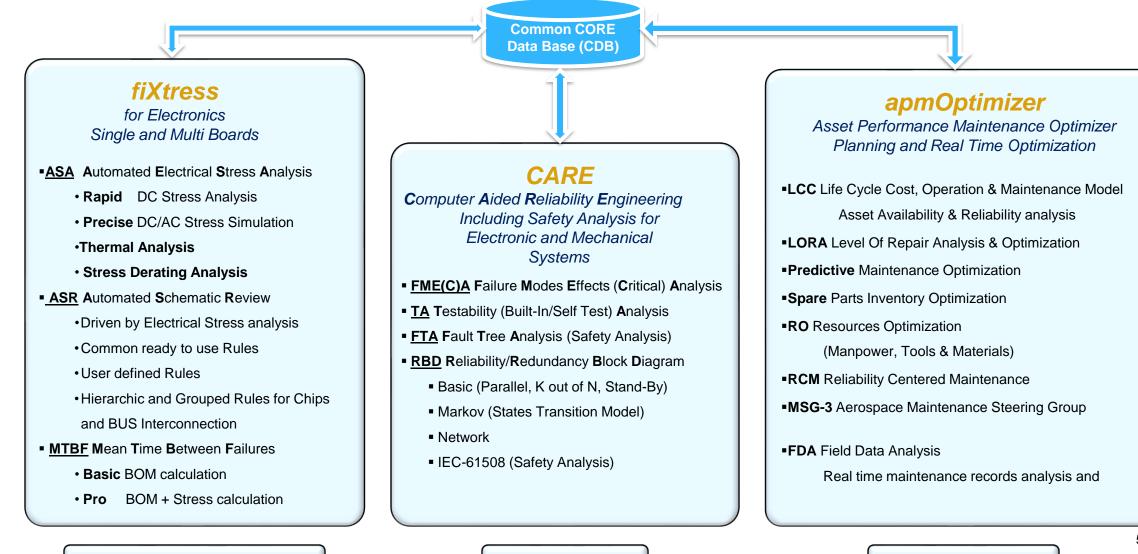
Reliable Engineering Optimized Maintenance You design, we Make it better

About BQR Company

- A **World Leader** in Reliability & Maintenance Engineering (**RAMST**) solutions for the EDA market
- Founded in Israel in 1989 as a Consulting and Software development company for implementing RAMST
- Until today BQR performed over ~3500 projects
- BQR team includes Scientists & Experts in:

Mathematics, Programing and Electronics and Reliability Engineering

Global Worldwide Customers including leading global enterprises


Design Error Detection & Electrical Stress Analysis

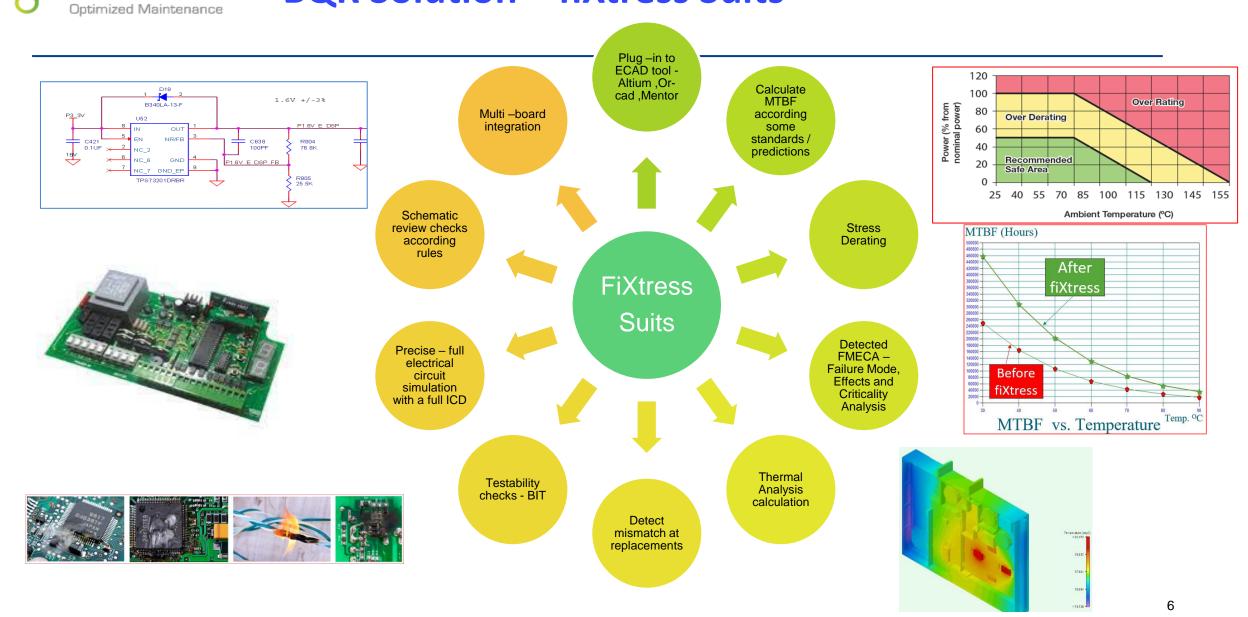
Computer Aided Reliability Engineering

Maintenance Planning & Optimization

Bar Leading engineering excellence

Complete Suite Solution

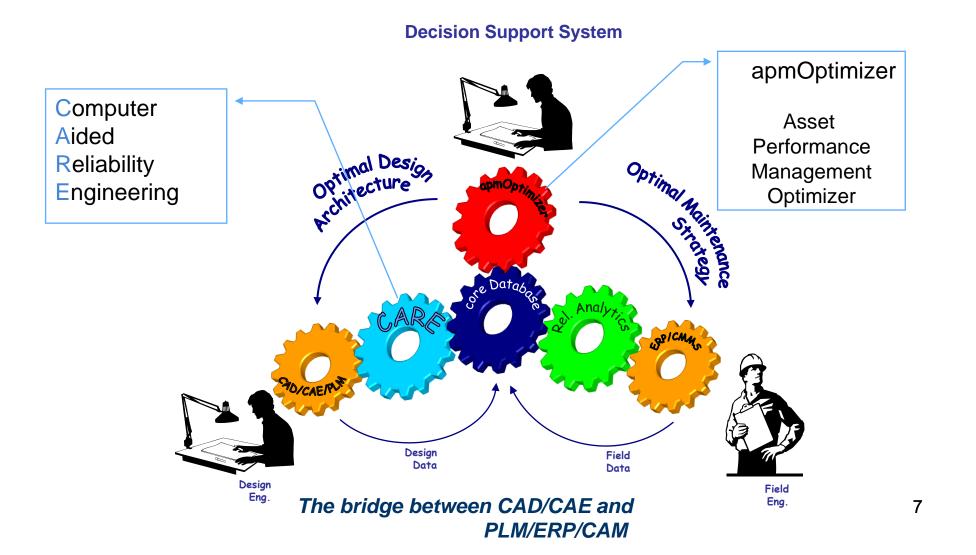
from


through

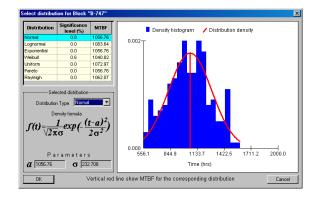
System Level

How to assist the Electrical engineer

Reliable Engineering

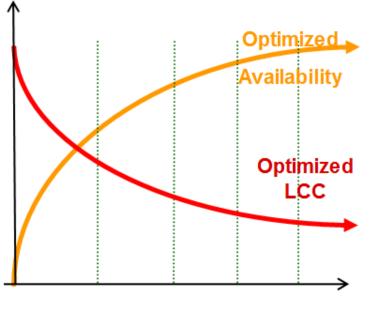

BQR Solution – fiXtress Suits®


How to optimize factories in Logistic and maintenance performance


BQR Solution – CARE®+ apmOptimizer®

7

C Library		Grosp Qs NEW	o 0	Family	Ven/Edit So Hethod: Tog	tie other				
	Compo Hahod I	inents Table 83236 Likray CLB	Group: Resident	gty.	2	activities .		-)	
	F	RefDes	Description	Part Number	Env	Pred Method	MTBF(Hrs)	FR(1)	piQ	Main Stress
	3	System	-	-	GB	B33216	19,174,970			
- 8	-	🖨 🍋 вом	-	BOM	<asparent></asparent>	<asparent></asparent>	19,174,970	0.052151 10		
-8		C1	ELEC560uF.	. M39006/09		<asparent></asparent>		0.015069 28%	1.0	V=60.0%
-8	8	C2	++CAP, CE	0603YC104		<asparent></asparent>		0.001332 2%	1.0	V=59.3%
-8	2	C3	++CC 1n 25	06035A102		<asparent></asparent>		0.000182	1.0	V=10.7%
-8	10	C4	-	C0805C106		<asparent></asparent>		0.000257	1.0	V=19.2%
	12	J1	-	9.6Volt		<asparent></asparent>		0.000190	1.0	
	110	J2		ToReceiver		<asparent></asparent>		0.000190	1.0	
8-0-5 8-0-0	PatNut	J3		To TimingCu.		<asparent></asparent>		0.000190	1.0	
1-0 M		E1	COIL	INDUCTOR		<asparent></asparent>		0.005291 10%	1.0	
		L2	COIL	INDUCTOR		<asparent></asparent>		0.005291 10%	1.0	
	Method	Q1	-	TIP31A		<asparent></asparent>		0.000746 1%	1.0	P=14.2%
		Q2		TIP31A		<asparent></asparent>		0.000746 1%	1.0	P=14.2%
		B 1		CR0603-FX		<asparent></asparent>		0.000209	1.0	P=2.0%
		R2		CR0603-FX		<asparent></asparent>		0.000201	1.0	P=0.0%
_		R3		CR0603-FX		<asparent></asparent>		0.000201	1.0	P=0.0%
t Tree II		E4	-	CR0603-FX		<asparent></asparent>		0.000226	1.0	P=6.1%
Netvol		R5		CR1206-FX		<asparent></asparent>		0.000366	1.0	P=47.4%
- 1		E R6		CR0603-FX		<asparent></asparent>		0.000202	1.0	P=0.2%
Active: [R7		CR0603-FX		<asparent></asparent>		0.000202	1.0	P=0.2%
		R8		CR1206-FX		<asparent></asparent>		0.000366	1.0	P=47.4%
		- SW1	Switch	SENS5906		<asparent></asparent>		0.005603 10%	1.0	Icont=31.6
		IC U1		LM555		<asparent></asparent>		0.007545 14%	1.0	
	x	TC U2		LM555		<asparent></asparent>		0.007545 14%	1.0	

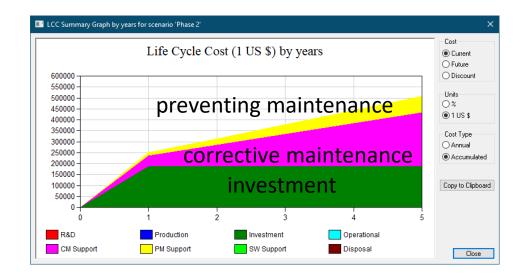

BOR Reliable Engineering Optimized Maintenance appropriate Particular Provided Head Additional Addita Additiona Additiona

Model Based Analyses:

- Asset Availability / Performance:
 - Mean Time Between Failure
 - Mean Time To Restore
- Life Cycle Cost
 - Spare Parts
 - Corrective Maintenance
 - Preventive Maintenance
 - Inspections
 - Downtime
 - Collateral Damage
 - Transportation

Optimize:

- LORA (level of repair) + Repair / Discard policy
- Spare parts: Quantity, Shared Stocks
- Preventive Maintenance: hidden failures, degradation
- Scheduled Maintenance: ageing



						₋ife	Cycle	Cos	st breakdown
Cost Elements	Current	% of LCC	Future	% of LCC	Discount	% of LCC	Future & Discount	% of LCC	
R & D	0	0	0	0	0	0	0	0	
Production	2	5.70337e-06	2	5.70337e-06	2	5.70337e-06	2	5.70337e-06	
Investment	2,285,919	6.51873	2,285,919	6.51873	2,285,919	6.51873	2,285,919	6.51873	
Operation	0	0	0	0	0	0	0	0	
CM Support	20,650,309	58.8882	20,650,309	58.8882	20,650,309	58.8882	20,650,309	58.8882	
PM Support	12,130,730	34.593	12,130,730	34.593	12,130,730	34.593	12,130,730	34.593	
SW Support	0	0	0	0	0	0	0	0	
Disposal	0	0	0	0	0	0	0	0	
Total (LCC)	35,066,960	100	35,066,960	100	35,066,960	100	35,066,960	100	

Optimization Comparison

advantage

- fiXtress (MTBF +Stress derating + design error detecting)and FMECA and BIT are reliability Suits for complex system these solution can reduce dramatically the risk for failure at the commissioning phase
- apmOptimizer can save a lot of cost end afford by saving spare parts and maintenance work and all by failure rate and maintenance task