

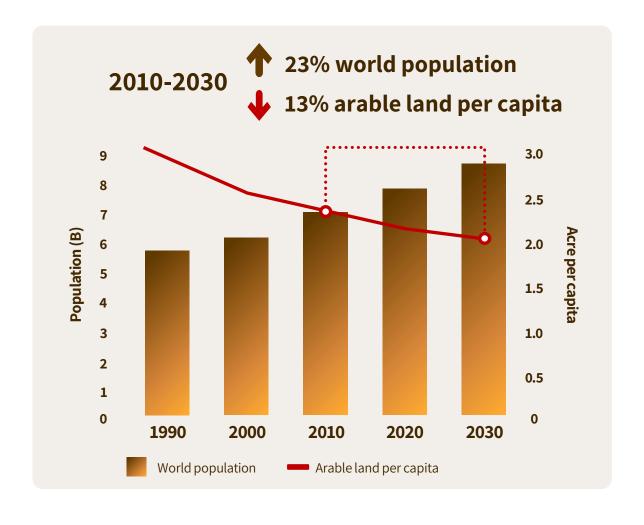
PlantArcBio

Genes made by Nature

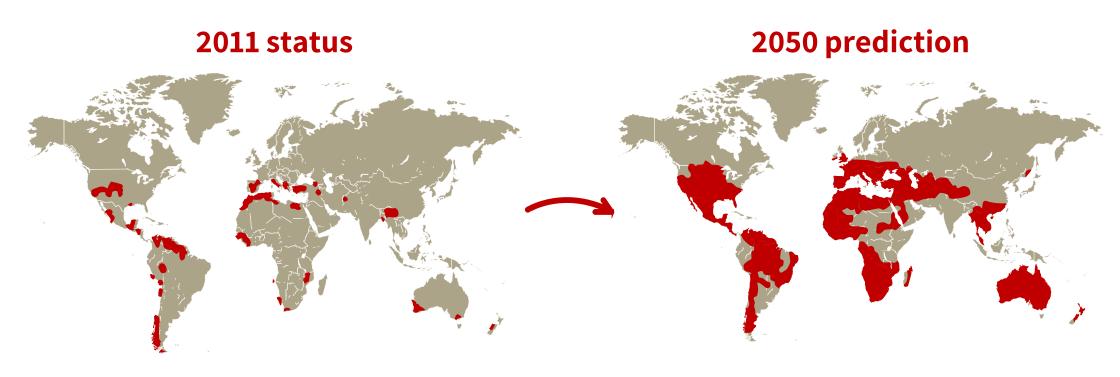
Global Food Security Challenges

Climate change, desertification

Increasing population


Less arable land available

Pests and diseases destroy 40% of global crops



Demand for sustainable agriculture

Drought Prevalence is Increasing

Drought in arable lands

U.S. agriculture losses due to drought:

\$10-14 billion annually

Source

Our mission

We are addressing global food security challenges
by leveraging our proprietary
biotechnology platforms
to improve plant performance
and biologically control plant pests

PlantArcBio Experts in Discovering & Leveraging Genes

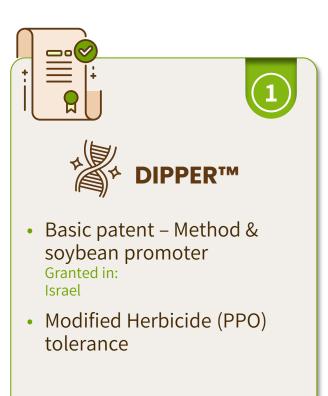
Addressing Global Food Security

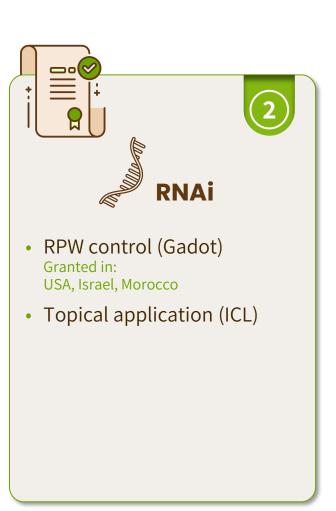
DIP TM Gene Discovery for improving target traits in agricultural crops

DIPPER ™

Direct In Plant Platform improving genes for Gene Editing

RNAi and biological pest control and yield increase





IP Status

- Basic patent Method & Drought tolerance genes Granted in: USA, Europe, Australia, South Africa, Mexico
- Drought tolerance 2 genes
- Herbicide (HPPD) Tolerance Granted in: USA, South Africa
- Herbicide (PPO) tolerance

Our Team

Dror Shalitin, PhD *Founder and CEO*

Limor Davidson Mund, MBA

VP Business Development

Nicholas Rutley, PhD

Chief Scientist

Ruchama Griba Salman, CPA

CFO

Team of PhDs and MScs

Plant physiology, molecular biology, biotechnology, genetics and breeding, agronomy, and plant protection

Board Of Directors

Dror Shalitin, PhD *Founder and CEO*

Amichay Rab, CPA
CFO at Seach Medical Group

Prof. Oded Shoseyov

Chairman

- Professor at the Hebrew University
- Scientific founder of 17 companies
- Board member in various biotechnology companies

Avi Zigelman, CPA

Outside Director

- Financial consulting, , arbitrations and mediations
- Outside director in leading Israeli companies

Shmulik Barashi

Partner at Fortissimo Capital Group

Serves as board member in several public companies and Fortissimo's companies

Ofra Yamin, CPA

Outside Director

- Partner at Shaham and Co. CPA firm
- Outside director in several companies

Suzana Nahum Zilberberg

Strategic and business consulting

- Former BioLight CEO
- Former VP APAC in Teva
- Board members in several companies

Brad Shurdut (PhD)

Regulatory & Government affairs strategist

Former VP at Corteva Agriscience

Micha Danziger

Owner of Danziger Flowers


- Chairman at Danziger Flowers
- Chairman at Equinom

DIP™ (Direct In Plant) - Discovery Platform

Building a gene pool from nature

Samples from different locations in nature

Transforming all genes into plants at once (1 gene in each plant)

Applying selection to screen best performing plants to identify desired genes, e.g.:

- Water stress for drought tolerance
- Herbicide sprays for HT tolerance
- Nitrogen-limiting stress for fertilize use efficiency
- Etc.

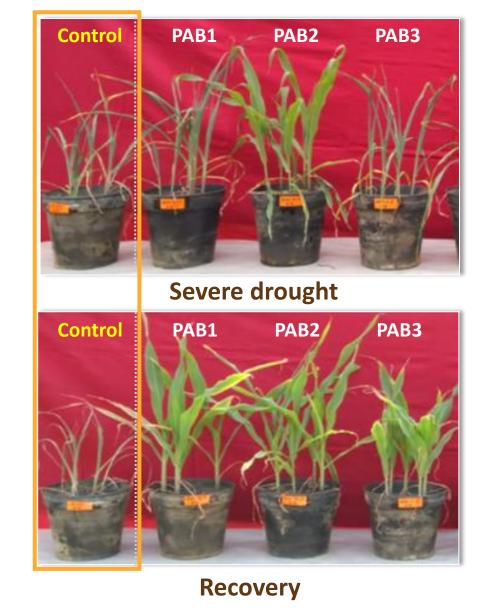
Quick scan of millions of genes directly in model plants (weeks to months)

Novel, unknown genes

Direct utility in plants (not theoretical)

Low cost per gene tested

Drought Tolerance in Corn with our Genes

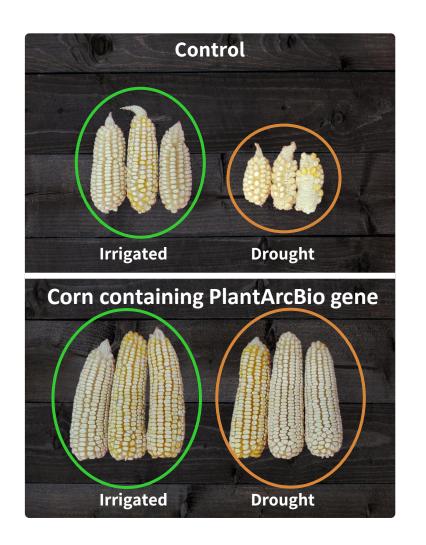

Trials performed by Rallis

100%

Recovery rate with PlantArcBio target genes after 22-28 days of water stress versus

No recovery in control

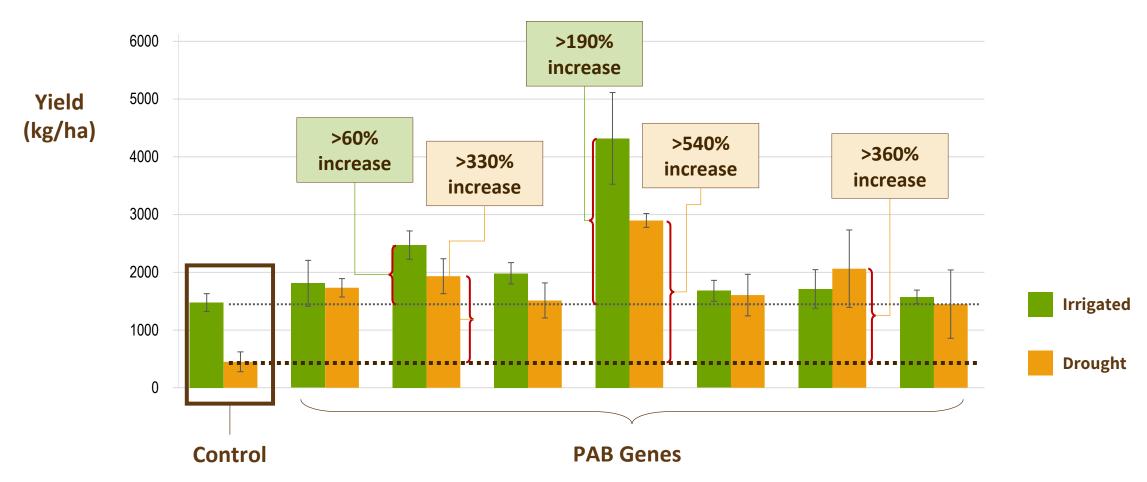
PAB Target Genes	Days of water stress	Recovery rate (%)
Control – A188	21	0
PAB1	22	100
PAB2	22	100
PAB3	28	100
PAB4	27	100
PAB5	23	100
PAB6	22	100



Yield Increase in Corn - Unprecedented Results

Trials performed by Rallis

60-250%


kernel weight of corn plants containing PAB drought tolerance genes

Yield Increase in Corn – Unprecedented Additional Results

A TATA Enterprise

Corn is Just the Beginning...

Herbicide Tolerance (HT)

DIP ™ enabled us to discover excellent HT genes faster & cheaper

HPPD Inhibitor Herbicide Tolerance Gene

- Discovered a novel gene (patent-protected) enabling plant tolerance to a wide range of HPPD inhibitor herbicides.
- Gene showed tolerance to all tested group 27 herbicide compounds (model plants).
- Was exempt from regulation in the US in Jan 2022 (for use in soybean and cotton).

PPO Inhibitor Herbicide Tolerance Gene

- Highly resistant to Flumioxazin, Carfentrazone-Ethyl, Oxadiazon, and Oxyfluorfen PPO-inhibiting herbicides.
- Received a USDA-APHIS Approval in the US for planting and breeding soybean modified with a novel PPO inhibitor herbicide tolerance gene
- POC in soybean.

The Need

Current gene editing processes are well designed for genes inactivation (knockout), however, for genes improvement they provide limited, long, inefficient and expensive solution

The Solution: DIPPER™

Direct In Plant Platform for Edited Regulation

A disruptive, high-throughput method, essential for optimizing gene editing processes, such as CRISPR, to improve crop traits

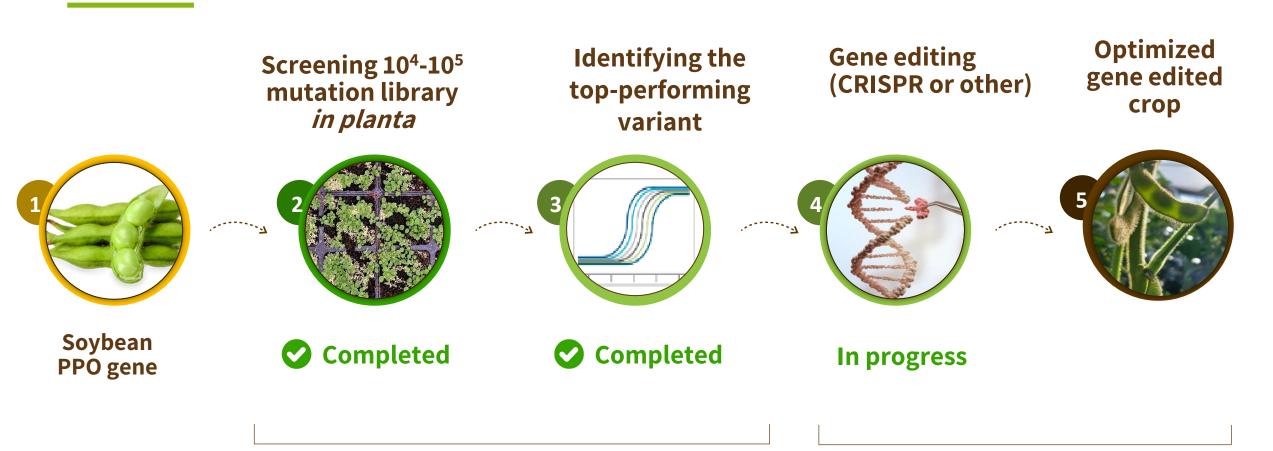
Used for enhancing crop performance by **changing expression and/or altering the function of native genes**

Can be implemented for:

- Herbicide tolerance
- Protein and oil levels control
- Abiotic stress tolerance
- More

DIPPER™

A high-throughput platform for identifying precise DNA modifications to improve native genes


Screening 10⁴-10⁵ **Gene editing Identifying the** (CRISPR or other) mutation library top-performing in planta variant Several 1 best **Optimized** Any target crop performing beneficial **Any trait** gene edited mutations mutation crop

DIPPER™ by **PlantArcBio**

Gene editingby **PlantArcBio or a partner**

Developing PPO Herbicide Group 14 Tolerant Soybean Using DIPPER™

DIPPER ™
by PlantArcBio

Gene editingby **PlantArcBio or a partner**

DIPPERTM Pipeline

Crop

Trait

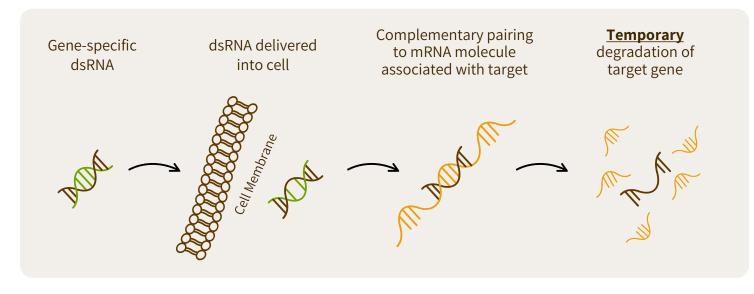
Herbicide tolerance

Abiotic stress tolerance

Enhanced nutrition

Novel, unknown Mutations

Enhanced gene expression



RNA interference (RNAi) is a natural biological process in which dsRNA molecules temporarily regulate gene expression

- For pest management RNAi
 approaches use a native
 process existing in pests,
 turning it against itself by
 targeting a specific, essential
 gene, temporarily degrading it,
 resulting in mortality of the
 pest
- For bio-stimulants the company uses technology to temporarily change the expression of plant development genes, without permanent genetic modification of the plant

What is RNAi Technology?

PlantArc Bio is one of the pioneering and leading companies worldwide in the development of green biological products based on RNAi for agriculture

Green

Non-toxic to the environment, bees, humans

Fully degradable

Short development and commercialization times

compared to genetic modification

PlantArcBio RNAi Developments

5

Development and commercialization agreements

With strategic partners in the fields of biological pest control and yield increase

1st

RNAi product

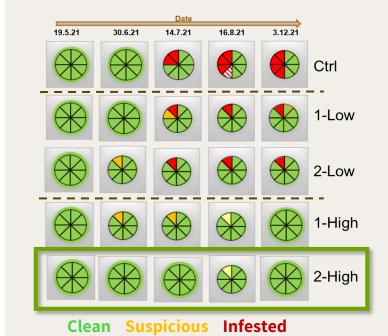
To control the Red Palm Weevil is expected to reach the market in 2026 (Israel)*

Biological and ecological control of pests

- Collaboration with Gadot-Agro to control red palm weevil
- Collaboration with TMG to control cotton boll weevil
- More

Collaboration with ICL in canola, rice and soybean crops

Pest Control – RNAi biological solution against Red Palm Weevil (RPW)



RPW is the most devastating pest of palms around the world

Market:

Annual losses of more than USD 213 million and USD 401 million in Egypt and Saudi Arabia, respectively

Positive results in Controlled Trial

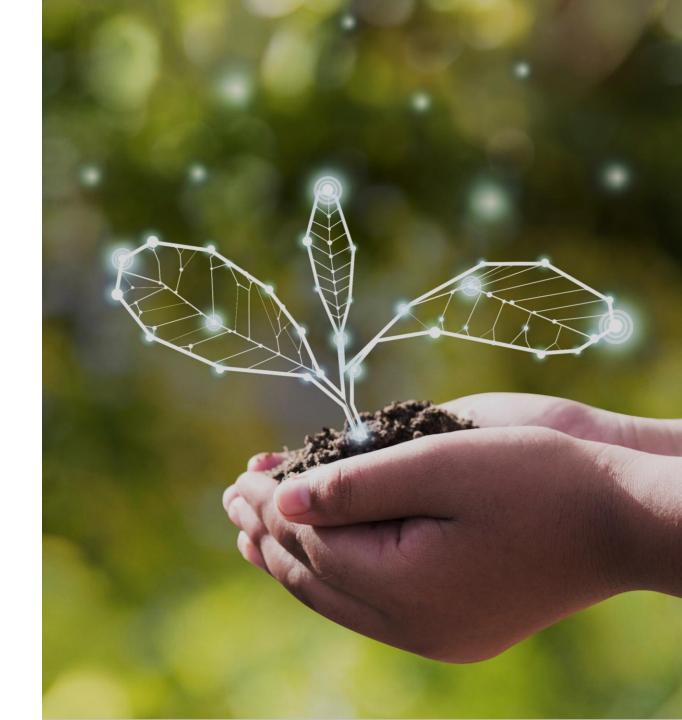
- Targets specifically only RPW
- Green, non-toxic
- Application: tree injection/spraying
- Highly effective
- Commercial launch: 2026 (Israel)

2

Increasing Yields Collaboration with AICL

Utilizing green exogenous biological applications to increase yield

- Collaboration since 2018
- We spray the plants once with RNA to temporarily reduce gene expression. The effect acts as a natural **bio-stimulant**
- This effect lasts for several days and results in increased crop yield
- Current crops: canola, soybean and rice
- Bio stimulants market:\$3.9B in 2023, CAGR 11.6%
- Expected commercial launch: 2027


Let's Plant the Seeds of Change Together!

https://plantarcbio.com/

tel: +972-9-8320911

email: info@plantarcbio.com

