

Modernizing into Business Centric Software Design

Advanced modern software architecture design, and software development
design, are the key to robust and resilient software, yet easy to quickly adapt to
changing requirements.

However, the majority of businesses base their operations on legacy software
systems. Adding modern and required features to these systems gets, in time,
harder longer and much more expensive (see following graph).

The farther to the right on the graph the
bigger the pain to the business. In that
situation the business can opt to select
only one of the following strategies:

• Doing nothing - worsens the situation.

• Replacement by a new system (off the
shelf as well newly developed) which
incurs very high cost and very high risk.

• Modernizing the existing system.

However, unfortunately even after selection of the second or third path usually the
organization ends up with the same faults that, in time, deteriorate the system to
the same place at the far right of the graph. We propose a way to avoid this
deficiency by designing business centric software.

We design software that does not require patches during its whole life cycle,
thereby maintaining its architecture and preventing it from turning into spaghetti
code over time.

Modernized software that lasts, rather than deteriorates over time, must be
designed for that goal as business centric software is. Business centric software
design suits both code replacement (but with considerably reduced risk) as well as
gradual modernization of the code.

Business centric software design yields dramatic reduction of time to market. It
also dramatically reduces development costs and mostly maintenance costs plus
the huge savings incurred by maintaining the same software architecture intact
with no need for re-writing the system every decade and a half (in average).

Implementation of software by Business Centric Design results in significant
reduction number of code lines, thereby dramatically reducing the cost of both

development and maintenance

It also allows for blazing fast response to requirements change request as well as
ever-changing market challenges

 - 2 -

Contact: phone: +972 (4) 6440145 email: office@tagar.com

 mobile: +972 (52) 2583269 mail: P.O.Box 80, Timrat 3657600, Israel

 Web site: https://www.tagar.com

What is Business Centric Design?

Software system is business centric only when it always achieves satisfactory
response time to change requests and satisfies ALL the features the business
needs. By ALL we mean those that were defined in the past, those which are
known, those that shall be defined in the future and those which are unknown.

The methodology we use brings long term benefits because the building blocks we
initially design cover all business domain's aspects.

Introduction of a new feature to the software does not change its architecture, it
merely is an additional and new integration of the existing architecture building
blocks.

After extracting the software's core use cases we identify areas of potential
change in those core use cases. Each volatility is encapsulated into a software
module that serves as a system building block, thereby encapsulating future
change inside one module to prevent the change from affecting the whole system.

We do not design by the requirements list nor by documents based on the
requirements list because requirements keep changing over time. These changes
eventually erode and invalidate the requirements-based design. Alternatively, we
design by meticulous business domain analysis since the business domain is very
stable and rarely changes. Software architecture designed that way requires no
changes over time.

Business Centric Design can be used for modernizing legacy software (Brown field)
as well as for replacing that legacy system at once (Green field).

Modernizing legacy software can be a long-term process that gradually transforms
the legacy software into a modern Business Centric system that supports all

business domain's activities.

One option for modernizing as a process is by initially wrapping the legacy system
with a lean shell of modern system. That shell is designed to modernize the legacy
system via a step-by-step replacement of old code with new (see details below).

mailto:office@tagar.com
https://www.tagar.com/

 - 3 -

Contact: phone: +972 (4) 6440145 email: office@tagar.com

 mobile: +972 (52) 2583269 mail: P.O.Box 80, Timrat 3657600, Israel

 Web site: https://www.tagar.com

Modernizing legacy S/W as a process

We use the Strangler Pattern when
modernizing legacy software should
be conducted as process. That is a
Façade that hides the legacy system
and controls the software flow during
the migration process.

Following is a figure of Microsoft's
description of the process:

For more details:
https://learn.microsoft.com/en-
us/azure/architecture/patterns/strangler-fig

That way the migration becomes a well
under control and much less risky
process than applying a new system as
a block.

Cost of utilizing that technique are also
reduced when using the normal
budget of maintenance and new
features introduction to advance the
migration by adding to the new system
another vertical slice that executes the
required feature rather than fixing or
changing the legacy system. Very often
clean slate writing is much shorter than
fixing an existing old code.

This activity will normally require little
or no extra budget for that
implementation compared to applying
it on the legacy system.

Business Centric Design's Benefits

Substantially improved responsiveness
to everchanging market demands.
Shorter development, testing and
deployment time (days instead of
weeks/months)

Substantial reduction of the number of
lines of code without losing any required
functionality

Guaranteed substantial SLA and cost
reduction

Guaranteed development plan with
accurate scheduling as well as
guaranteed completion on time and
within budget

Maintaining all required functionality
without performance degradation

Extended system reliability also in
distributed computing environments

Extended scalability not eroded by
future changes

Higher customers' and users'
satisfaction

Add almost unlimited features to legacy
systems thereby solving technology
gaps of older systems by modernizing
them

Ability to implement gradual transition
from legacy systems into modernly
architected systems

Control of the pace of new features
introduction to legacy systems and of
their respective implementation
schedule according to financial and
other business constraints

mailto:office@tagar.com
https://www.tagar.com/
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig

